
SANDIA REPORT
SAND94-8233 l UC-405
Unlimited Release
Printed July 1994

DAVE: A Plug and Play Model for
Distributed Multimedia Application
Development
(To be presented at the ACM Multimedia ‘94 Conference,
Fall 1994)

R. F. Mines, J. A. Friesen, C. L. Yang

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94551
for the United States Department of Energy
under Contract DE-AC04-94AL85000

SANDIA NATIONAL
LABORATORIES

TECHNICAL LIBRARY

SF2900Q(8-81)

Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.
NOTICE: This report was prepared as an account of work sponsored by
an agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of thelr employees, nor any
of the contractors, subcontractors, or their employees, makes any war-
ranty, express or implied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use
would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United
States Government, any agency thereof or any of their contractors or
subconractors. The views and opinions expressed herein do not
necessarily state or reflect those of the United States Government, any
agency thereof or any of their contractors or subcontractors.

This report has been reproduced from the best available copy.

Available to DOE and DOE contractors from:

Office of Scientific and Technical Information
P. 0. Box 62
Oak Ridge, TN 37831

Prices available from (615) 576-8401, FTS 626-8401

Available to the public from:

National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Rd.
Springfield, VA 22161

UC-405

SAND94-8233
Unlimited Release
Printed July 1994

DAVE: A Plug and Play Model for
Distributed Multimedia Application Development

Robert F. Mines, Jerrold A. Friesen, Christine L. Yang
Distributed System Research Department
Sandia National Laboratories/California

ABSTRACT

This paper presents a model being used for the development of distributed multimedia applications.
The Distributed Audio Video Environment (DAVE) was designed to support the development of a
wide range of distributed applications. The implementation of this model is described. DAVE is
unique in that it combines a simple “plug and play” programming interface, supports both
centralized and fully distributed applications, provides device and media extensibility, promotes
object reuseability, and supports interoperability and network independence. This model enables
application developers to easily develop distributed multimedia applications and create reusable
multimedia toolkits. DAVE was designed for developing applications such as video conferencing,
media archival, remote process control, and distance learning.

3/4

DAVE: A PLUG AND PLAY MODEL FOR
DISTRIBUTED MULTIMEDIA APPLICATION DEVELOPMENT

1. INTRODUCTION

Significant advances have been made in distributed computing and in the development of
multimedia ready computers and related hardware. Models for the integration of these two
technologies are not yet available. Software applications, such as desktop video conferencing, that
take advantage of this new hardware are being introduced. What is lacking are software models
that integrate these new technologies into a distributed multimedia environment. Distributed Audio
Video Environment (DAVE) is a model that provides for that integration. DAVE was designed to
support the development of a wide range of distributed applications.

Our approach combines object-oriented analysis and design, distributed computing, and
multimedia technologies to develop a heterogeneous, distributed multimedia development
environment. DAVE was implemented using standard UNIX workstation components and
traditional IP networking for all interhost communications. In the past, distributed environments
(e.g., Rapport[11) relied on means such as coax cable or telephony rather than IP for media
transport. Our goal was to leverage off existing workstation and network infrastructures to
increase the level of interoperability and availability.

The strengths of the DAVE model come from the programming interface and the ability to provide
a high level of abstraction for devices through object oriented techniques. The programming
paradigm allows application developers to treat media devices (e.g., cameras and microphones) as
distributed resources akin to the way graphics and windows are used today on workstations. This
flexibility and level of accessibility allows developers to easily integrate multimedia into our
existing distributed environment. Through inheritance and data independence, developers are able
to define additional devices and media types and integrate them into DAVE. We found when
porting our video conferencing application to a Sun from an SGI required only the development of
a relatively small amount of device specific code and that the application itself required almost no
modifications. In addition, we were able to change the method of compression used by simply
modifying the application to “plug in” the desired compression algorithm. These features provide
easy access to application developers who do not want to spend their time learning the details of the
media devices or who want to dynamically change their applications at run time.

2. DAVE MODEL

An illustration of a video conferencing application based on the DAVE model is shown in Figure 1.
The major components of the DAVE model include an application programming interface (API), a
connection manager, an object manager, and device objects. Application developers are
responsible for making DAVE API calls to create and connect the device components necessary for
their applications and have the option of adding new devices to the system. The object manager
(OM) handles all real-time activities, manages device objects, and interfaces to the connection
manager. The connection manager (CM) is responsible for all non-real-time activities, such as
resource allocation and authorization, Details of these components and the overall model are
discussed in the following sections.

network

object manager domain

object manager domain

Figure 1. Video conferencing application based on the DAVE model.

2.1 PROGRAMMING MODEL

The usefulness of a well-defined API was shown by Bellcore with their Touring Machine[2].
DAVE provides a simple and intuitive programming paradigm for application developers to use.
Since multimedia applications typically interact with a variety of physical devices, such as VCR’s
and remote controls, DAVE emulates that physical environment as much as possible through the
use of software abstractions. The API is intended not only to provide a simple programming
interface, but also to facilitate reusability of software. As underlying portions of the model change,
a high degree of portability between media spaces in DAVE will continue to exist.

DAVE defines a plug-and-play programming paradigm. This paradigm was designed to emulate
the analog audio-video environment with which most developers are familiar. Using this interface,
programmers create distributed devices. These devices are software abstractions representing real
physical devices, and are created on host machines either locally or remotely over a network
through a Create call to the API. The programmer must specify the host machine and the device
type. A unique object ID is returned. These distributed objects can then be connected by an API
call to connect devices where the ID of the source and sink objects are specified. After the devices
are connected, the system is told to enter the run state, and the devices are periodically sampled.
The notion that devices are essentially objects that get sampled at a user-specified sampling interval
is central to the DAVE model. Other API calls include the ability to send a command message to
any device using its object ID as a reference, to allocate resources, and to query the system for
information concerning available resources.

6

The video conferencing application shown in Figure 1 shows several devices connected together to
form an application network that spans the physical network. In this case, the network connects
two machines. On each machine, a camera is plugged into a compression device, which is plugged
into a network sink device. A network source device on the other machine reads the media data
from the network and passes the data to a decompression device. The decompression device is
connected to a video window. By making these connections, we have put together a video stream.

This API is also designed to allow for dynamic applications. For example, if a new video
compression algorithm is developed, it can easily be plugged into the media stream Using this
programming model, determining which compression algorithm to plug in can be made at run time.
In addition, a local frame capture application to store video to disk could be changed to a
application that provides video to other machines on the network by replacing the Sink device. In
the first case, the local video stream would begin with a Camera device and end with a file system
Sink device. To change this to a video broadcast application, the video stream would begin with
the Camera device but the file system Sink device would be replaced by a network Sink device.
This provides for a high level of object reusability as well as flexibility because the same device
objects can be plugged into many applications.

-
Call Parameters

Create Ob-jectType, ...
Delete ObjectType, ...
ConnectObjec t SourceObject, Sinkobject, ...
DisconnectObject SourceObject, Sinkobject, ...
Connect MachinelD, ,..
Allocate ObjectType, ...
ResourceQuery ResourceType, ...
Init
Command ObjectID, ...

2 . 2 APPLICATION PROGRAMMING INTERFACE (API)

The API is a key component in the DAVE model. I t is through this programming interface that
application developers are able to create complex distributed applications using only a few
application calls. The API provides an interface between the connection manager and the
application. It uses lexical analysis to identify valid input and then checks for valid sequencing of
the input from the API call by parsing the input. The API then puts the infomiation into the correct
format and passes it to the connection manager. Information received from the connection manager
is returned through the API. A typical call is to create a device object. This request gets passed to
the connection manager and then to the object manager. The object manager returns either an
object ID, which is used as a device handle, or an error condition. Some of the basic API calls
used in DAVE are listed in Table 1.

Table 1. DAVE API calls.

An abbreviated code sample for the development of the audio portion of the application described
in Figure 1 is listed in Figure 2.

7

From this code example, it can be seen that DAVE provides a very simple programming interface
for application developers. This "plug-and-play" programming paradigm is one of the unique
features and strengths of DAVE.

S e s s i o n I D A = I n i t (H o s t A , A c c e s s I n f o 1 ;
S e s s i o n I D B = I n i t (H o s t B , A c c e s s I n f o) ;
S t a t u s = C o n n e c t (H o s t A 1 ;
S t a t u s = C o n n e c t (H o s t B 1 ;
M i k e A = C r e a t e (H o s t A , TYPE MIKE) ;
M i k e B = C r e a t e (H o s t B , TYPE-MIKE) ;
S p e a k e r A = C r e a t e (H o s t A , TYPE SPEAKER) ;
S p e a k e r B = C r e a t e (H o s t B , TYPE-SPEAKER) ;
N e t S i n k A = C r e a t e (H o s t A , TYPE-NETSINK, TYPE HOST, H o s t B) ;
N e t S i n k B = C r e a t e (H o s t B , TYPE-NETSINK, TYPE-HOST, H o s t A) ;
N e t S o u r c e A = C r e a t e (H o s t A , TYPE NETSINK, TYPE HOST, H o s t B) ;
N e t S o u r c e B = C r e a t e (H o s t B , TYPE-NETSINK, TYPE-HOST, - H o s t A) ;
S t a t u s = C o n n e c t O b j e c t (M i k e A , N e t S i n k A) ;
S t a t u s = C o n n e c t o b j e c t (M i k e B , N e t S i n k B 1 ;
S t a t u s = C o n n e c t O b j ec t (S p e a k e r A , N e t S o u r c e A) ;
S t a t u s = C o n n e c t o b j e c t (S p e a k e r , N e t S o u r c e B 1 ;
S t a t u s = R u n (H o s t A) ;
S t a t u s = R u n (H o s t B) ;

Figure 2. Sample Code Segment

2 . 3 CONNECTION MODEL

Within the DAVE model, there exists the concept of a session. A session is an association that
exists between an application and a connection manager. A connection manager can participate in
exactly one DAVE session. A session is created by the application through an API call to initialize
the session. At this point, the connection manager and object manager are queried for their state.
If they are not in a Connected state, then a session ID is created by the connection manager and
returned to the application. At this point, the connection manager enters an Initializing state.
Access control information is provided along with the API call to initialize a session. This
information is checked before any connections can be established.

This simple model allows great flexibility for developing applications that require different control
configurations. Applications that are centrally controlled are preferred in some environments[3].
This centralized model is better suited for applications that require centralized functions for
accounting or security purposes, or distributed computing applications where a single source of
information is being processed in parallel by many external slaves[4]. Other applications, such as
multi-party video conferencing, are better modeled using a peer-to-peer model where no single
person is controlling the overall conference[5]. The current model supports either of these two
general configurations. Future work will focus on extending this model by providing for the
merging of sessions and for the coexistence of multiple sessions on a single host. Currently, a
DAVE host can only be involved in a single DAVE session.

8

2 . 4 CONNECTION MANAGER

The connection manager is responsible for all functions that are not real-time. These functions
include resource allocation, local security checking, exception handling, and state information,
including configuration management. The connection manager exists as a UNIX daemon called
the Connection Manager Daemon (CMD). It acts as an interface between the application and the
Object Manager Daemon discussed above. All requests pass through the CMD, which allows it to
validate, store, forward, and execute those requests. In addition, the connection manager must
negotiate and ensure the correct sequence of requests required to build the application system. In
general, the CMD serves as a clearinghouse for non-real-time communications for its host
machine. The Ch4D is currently implemented with only the basic functionality to allow for the
creation and execution of sessions and applications. Future implementations of the CMD will have
enhanced functionality to support resource allocation and security.

Events

A = Allocatet
C = Cornmandt
CH = Connect Hostt
CO = Connect Objectt
CR 0 = Create Objectt
DEL 0 = Delete Objectt
DH = Disconnect Hostt
DO = Disconnect Objectt
RQ = Resource Queryt
E = End
I = lnit
INT = Interrupt
P = Pause
R = Run
RE = Resume
s = stop
EX = Exception

States

I = Idle
C = Connected
D = Disconnected
IN = Initialization
R = Run

DH, E, EX

3

Figure 3. State diagram for Connection Manager

9

2.5 EXECUTION MODEL

DAVE was developed to emulate the physical media environment that it abstracts. This is seen in
the plug-and-play programming paradigm and in the execution model for DAVE. The execution
model used by DAVE can be classified as data-driven, rate-activated, node-limited and data-
independent. Each of these classifications is explained below.

DAVE is designed to be driven by device data, or "data-driven." This means that the presence of
data at a device causes the device to be processed. The usefulness of data-driven models for
building applications has been demonstrated by numerous scientific visualization and image
processing applications[6]. As data becomes available at the devices, it is passed through the
system until its usefulness ends.

This processing of the data has beginning and end points. These points are called true sources and
true sinks, respectively. A true source is a device that creates data and can be identified in the
model by the fact that i t has no other device as its source; a typical example is a camera device. A
true sink is any device that has no other device as its sink; a typical example is a network sink
device. A true source and its corresponding sink must reside on the same host.

However, true sources are not data-driven, but "rate-activated," which means that they are sampled
at a rate specified by the application. For example, a Camera might have a sample rate of 15
samples per second. The object manager in DAVE attempts to honor that rate to the extent that it is
possible. There are realistic constraints to this technique. For example, sampling rate cannot
exceed the computer clock frequency. In addition, there are usually other activities taking place on
a computer that compete for operating system resource allocation and scheduling. DAVE does not
require special operating system support for real-time applications, but it would benefit from it[7].

The execution model for DAVE is "node-limited," which means that for any given true source of
data, the true sink for that data stream is guaranteed to exist on the same host. There is some state
information that can be carried to outside hosts, and typically is, but that is independent of the
DAVE execution model. Nodal limitation turns out to be an advantage in terms of the types of
distributed applications that can be developed, because of increased flexibility. Developers can
create distributed applications that are either peer-to-peer or cenually organized. One application
that takes advantage of a peer-to-peer organization is a multicast video application. Here the
transmitter and receivers have no connection to each other; They each run as independent
applications. At the other extreme is reniote experiment control. Here the creation and control of
media devices on several machines would be performed from a single central application.

DAVE is "data-independent" because sampling is done by the object manager independent of the
type of data being processed by the device being sampled. True sources are responsible for
providing message space, and each device in the chain has the option of either using the buffer
provided by its source or providing its own. Type checking is not performed in the system
because devices are connected independent of the type of data they are processing. Thus, plugging
a camera device into a speaker device is allowed, and it is up to the application programmer to deal
with the results. The ability to separate media type from the execution model provides for the
creation and addition of additional media types. This media independence makes DAVE unique
from other distributed multimedia system.

Once the sampling of devices has begun, the user application is free to do other processing. The
application has the option of registering a callback routine to handle exception conditions returned
from DAVE. These events could come from a device or one of the managers. Exception
conditions include an object ID that will signal the source of the error, and they may also include
other device-specific information.

10

DAVE supports one other type of execution that is an exception to the model described above. It
allows for the creation of separate processes that run independently of the rest of the DAVE
system. Control over these processes is limited to creation and deletion. This capability is
provided to give developers the ability to exec separate UNIX processes and later to kill them.

DEVICES
microphone f i l t e r net work

rmicrophone 0 1 0
f i l t e r 0 0 1
ne t work 0 0 0

2 . 6 OBJECT MANAGER DAEMON

An object manager is responsible for managing the distributed objects or devices. Management, in
this case, means instantiation, deletion, sampling, and configuration. All real-time functions are
handled by the object manager. The manager gets requests passed to it through the CMD, and it
acts upon those requests. In addition, it passes back to the application exception conditions to the
application through the connection manager and the API. The object manager exists as a UNIX
daemon, called the Object Manager Daemon (O m) , and receives requests by way of sockets.

The choice of implementing the OI'vlD and DAVE devices as a single process, as opposed to a
separate process for each device, was chosen for efficiency and ease of implementation. By using
a single process we were able to reduce the delays associated with process context switching, and
reduce the number of memory copies required. For a typical application there are no memory
copies performed by the OMD or the devices. In the case of network devices the operating system
may or not perform some memory copies, but these are out of our control.

The OMD keeps track of application objects and device connections. As device Create and
Connect requests are received, it instantiates the specified devices and keeps track of the logical
device connections made through the plug-and-play API. This infomation is stored in an
associative array. The array keeps track of which devices are connected and which are true sources
(devices with no sources of their own) and true sinks (devices with no sinks of their own).

7 SOURCE
SINK
DEVICES

Table 2. Logical device connections for audio broadcast

Table 2 is an example of an array for a simple audio broadcast application. There are three devices:
a microphone, an audio filter, and a network sink. When in the Run state, the OMD scans this
array for true sources. In this case, the microphone is not a sink for any other device so it is a true
source. It then checks the device to see if i t is time to sample it. If the device is ready, the Oh4D
samples it and passes the return information to the sink device. The OMD continues this process
until a true sink is reached. In this example, the true sink is the network sink. Any device can
have multiple sources, but only one sink. After sampling the device, the sample time is updated.
In addition, the sample time of the Message buffer is updated. This information can be used for
synchronization.

The OMD enters the Run state via a Run API call. The Oh4D cannot enter a Run state until it first
enters the Connect state. The OMD can only be connected to a single Ch4D at any given time.
Once the Run state is entered, sampling of the objects using the execution model described above
begins. This sampling continues until an exception condition occurs that causes the Run state to be

11

exited, or until a Pause, Disconnect, or Stop command is received. Exception conditions
recognized by the Oh4D are reported back through the connection manger The OMD also provides
miscellaneous housekeeping chores such as calling the device Init routine at instantiation, passing
messages between devices, and maintaining a connection to a Ch4D.

2 .7 DEVICE CLASS HIERARCHY

DAVE was designed to provide device extensibility. To enable this, the model provides a well-
defined interface to device objects, along with a device class hierarchy. At the top of this hierarchy
is a base Dev class. This class contains the attributes and methods that are required by the object
manager to manage these devices. These attributes include a device ID, a sampling rate, and time
stamps that indicate the last and next sample time. In addition to the attributes defined, there are
five virtual functions that provide the interface between the object manager and the device itself.
These functions include a command function and a process function. The command function
(cmd) provides a means to send a Command message type to the device, and for a device to return
exception information to the application. A subset of the device class hierarchy as it exists in
DAVE is shown in Figure 4.

Developers that want to create additional devices can derive them from the Dev base class. This
inheritance gives the Oh4D the information and control that it needs to manage the device. Each
device must define the virtual functions defined in the base Dev class. The process function (proc)
is called at sample time for the device. If the device does not have a sample time specified for it,
the OMD uses a default value. The initialize function (init) is called by the OMD when it creates a
device, and a Command message is optionally passed to it.

I r I 1

Network a VideoDev w AudoDev a - -
NetSinkRT Net Src FIT HuffDecom PLXCamera GLVwin SGlSpeaker

NetSinkAT Net SrcATM RGBComp VLCamera P LXVWin

RGBDecomp

Figure 4. Device class hierarchy.

2.8 MESSAGE HIERARCHY

In addition to the device class hierarchy in DAVE, there is also a message hierarchy. This message
hierarchy is used to provide media type extensibility. Application developers can define their own
media data types using this hierarchy. DAVE currently provides data types that include audio and
video message classes. Other media types can be defined by inheriting from the Message base
class. All of the attributes needed by the object manager to manage these buffers are defined in the
base class. In addition, dynamic binding is used to provide a function interface to the data storage

12

area in the message. A partial listing of the Message class hierarchy as it currently exists is shown
in Figure 5.

Messages are the means for passing data inside the DAVE model. All DAVE devices accept and
return a pointer to a Message from their Process function. In addition, the Command Message
class provides a general mechanism for passing commands to and from devices in the model. No
other data types can be manipulated by the OMD or by DAVE devices. To facilitate the
management of messages, there is a MsgMgr object provided with DAVE.

Message

I I I
Media Command Protocol

I I+
Tenet

I--
VideoFrame AudioMsg GenCmd RTP

Figiire 5. Message class hierarchy.

3 . DISCUSSION OF THE MODEL

The DAVE model is unique in that i t provides the combination of a distributed plug-and-play API,
offers device and media extensibility, is object oriented, uses traditional UNIX network facilities
for transmission, and uses existing workstation audio and video hardware that is commonly
available on many workstations. We have seen many individual desktop multimedia applications
emerging but these have been monolithic. These applications, like vat[8] and nv[9], have proven
usefulness of collaborative tools but do not provide the flexibility and reuseability needed to treat
multimedia capabilities as network resources. Coniputer vendors, such as SGI and SUN, have
developed products that are collaborative tools similar to vat and nv, but these also are static
applications. Again, they fail to treat multimedia capabilities as shared network resources and do
not provide a distributed development environment.

The strengths of the DAVE model come from the programming interface, the reusability of objects,
media and device extensibility, and network independence. During the development of our
applications, we found the actual code development was simple and elegant by using the plug-and-
play API. Many of the objects were reused several times without modification. The ability to
provide network independence by viewing the network as just sinks and sources allowed us to run
our applications over traditional networks such as Ethernet and FDDI, as well as future networks
such as Asynchronous Transfer Mode (ATM) using direct AALS calls. DAVE is also very good at
hiding the details of individual devices from the application developer. As an example, developers
can use Microphone and Speaker objects without having to worry about what to do about silence
detection and other characteristics specific to a device. Finally, because the OMD and devices run
inside a single process we were able to keep memory copies to a minimum (usually none) and
minimize scheduling delays caused by the operating system. Measurements of application
performance characteristics are under way.

Bellcore's Touring Machine[2] was one of the first research efforts to realize the advantage of an
API to provide support for the development of a wide range of applications. The Touring Machine
was designed around analog transmission and switching. DAVE uses standard UNIX networking

13

for media transmission. The DAVE approach does not require the purchase of special cable plant or
exotic hardware and supports both multicast and broadcast of data thereby increasing
interoperability and portability. AT&Ts Rapport[11 appears to somewhat address the issue of
media independence through software abstractions. Rapport, like the Touring Machine, is based
on analog transmission.

More directly related to DAVE is the IMA's Multimedia System Services specification (MSS).
Similar to DAVE, the MSS integrates multimedia resources into a distributed environment. The
MSS also provides a "plug-and-play" programming environment for application developers. There
are several other areas were the two systems differ.

DAVE has a well-defined execution model as well as object model. The MSS defines only an
object model; DAVE does not require the use of an gbject Request Broker. We did not want to
rely an ORB'S existence for DAVE; the MSS requires an ORB. DAVE was designed to be data
independent allowing for easy extensibility, whereas the MSS defines data types to allow for type
checking. DAVE defines a simple standard systenddevice interface to hide device specifics,
whereas the MSS provides a flexible developer defined device specific interface.

4 . DAVE APPLICATIONS AND STATUS

In order to provide proof-of-concept of the DAVE model, we developed two separate applications
that use all features of the model. The first application is video conferencing, and the second is
one-to-many audio/video. Both applications are capable of controlling all DAVE objects from
instantiation through modification to deletion. For example, both applications can instantiate a
speaker object, change its output volume, change its output sampling rate, switch between
headphone and speaker jacks, and destroy the object when completed. Using the DAVE
application programming interface, a virtual connection can be established between a microphone
on one machine, through the necessary network objects, to a speaker on another machine.

The broadcast video application is capable of "tuning in" to niultiple channels, similar to a home
television tuner. When the user selects a "channel change," new connections are established to the
appropriate audio and video network objects, and the user sees a new channel. The workstation
being used to view the broadcast video does not need to be video-capable, Le., have a video
capture board, to receive the broadcast.

The user interface for the video conferencing application is used to establish a connection to a user
on a remote video-capable workstation. The user specifies the remote machine and username with
whom the user wishes to have a conference, and, if the remote user accepts the call, a connection is
built. At this point, the user is capable of adjusting the local input and output volume controls, the
sampling rate, and all video quality parameters such as size, frame rate, and compression quality.

Both of these applications required a minimal amount of coding. Excluding the user interface
components, the video conferencing and audio-video broadcast applications required between 100-
200 lines of code. This demonstrates the power of the DAVE API. In addition, both applications
used the same device objects. No additional devices were required to be written. This points to a
very high level of code reuseability. A video tape of these applications is available and can be
obtained by emailing any of the authors.

The DAVE software is still under development. Improvements in functionality and fixes are being
performed for the CMD and the OMD. Much of our work is currently focused on improving the
API and the Ch4D in the areas of exception callbacks and resource specifications.

14

5 . CONCLUSIONS

DAVE has proven to be a useful model for developing distributed niiiltimedia applications. This
has been shown by developing desktop video conferencing and other distributed applications based
on DAVE. These applications take advantage of the simple plug-and-play programming paradigm.
The applications were simple to design and develop using DAVE. Each application uses the same
distributed DAVE objects, which provides a very high level of reusability for these objects.

The strengths of the DAVE model come from the programming interface and the ability to provide
a high level of abstraction for devices through object oriented techniques. The programming
paradigm allows application developers to treat media devices, like cameras and microphones, as
distributed resources akin to the way graphics and windows are used today on workstation. This
flexibility and level of accessibility allows developers to easily integrate multimedia into our
existing distributed environment. The ability to "plug-and-play" multimedia resources through the
use of a few MI calls greatly simplified the development of applications and at the same time hide
device specific interfaces from application developers.

REFERENCES

S. Ahuja, J. R. Ensor, S. E. Lucco. "A Comparison Of Application Sharing Mechanisms in
Real-time Desktop Video Conferencing". Proceedings IEEE Conference on Office
Information Systems. 1990.

Gita Gopel, Gary Herman, and Mario P. Vecchi. "The Touring Machine: Toward A Public
Network Platform For Multimedia Applications". Bellcore, Morristown, NJ.

XShell 2.2 Release Notes. Xpersoft Corporation, San Diego, CA. 1992.

J. F. Macfarlane, R. C. Armstrong, R. E. Cline, Jr., and M. L. Koszykowski. "Application
of Parallel Object-Oriented Environment and Toolkit (POET) to Combustion Problems."
Internal Report. Sandia National Laboratories, Livemiore, CA. 1992.

Eve M. Schooler. "A Distributed Architecture for Multimedia Conference Control". IS1
Research Report ISI/RR-9 1-289. 199 1.

The Khoros Group, "The Khoros Users Manual". Department of Electrical and Computer
Engineering, University of New Mexico, Albuquerque, NM. 1987.

S. M. Stevens. Proceedings "Next Generation Network and Operating System Requirements
for Continuous Time Media". Second International Workshop on Network and Operating
System Support for Digital Audio and Video. 1991.

Van Jacobson. VAT - Visual Audio Tool manual page. Lawrence Berkeley Laboratories,
Berkeley, CA.

Ron Fredericks. nv - Network Video manual page. Xerox PARC. Palo Alto, CA. 1992.

i5/16

UNLIMITED RELEASE

INITIAL DISTRIBUTION:

9003
901 1
9040
0803
0805
901 1
901 1
9012
901 1
901 1
901 1
901 1
901 1
900 1

9022
9022

9018

D. L. Crawford, 8900
R. E. Palmer, 8901
G. Gutierrez, 8902
W. D. Swartz, 8903
A. R. Iacoletti, 8904
P. W. Dean,8910
J. C. Berry, 8910
D. H. Ching, 8910-1
R. E. Cline, 8920
J. A. Friesen, 8920
E. W. Knightly, 8920
R. F. Mines, 8920 (10)
C. L. Yang, 8920
J. C. Crawford, 8000
Atrn: E. E. Ives, 5200

J. B. Wright, 5300
M. E. John, 8100
R. J. Dewy, 8200
W. J. McLean, 8300
L. A. Hiles, 8400
P. N. Smith, 8500
L. A. West, 8600
R. C. Wayne, 8700
T. M. Dyer, 8800

Mail Distribution (8533-1) for OSTI (10)
Mail Distribution (8533- l)/Technical Library Processes,

Central Technical Files (3)
MS-0899, (7141) (3)

17/18

	ABSTRACT
	1. INTRODUCTION
	2. DAVE MODEL
	2 .1 PROGRAMMING MODEL
	2 .2 APPLICATION PROGRAMMING INTERFACE (API)
	2.3 CONNECTION MODEL
	2 .4 CONNECTION MANAGER
	2.5 EXECUTION MODEL
	2 .6 OBJECT MANAGER DAEMON
	2.7 DEVICE CLASS HIERARCHY
	2.8 MESSAGE HIERARCHY

	3 . DISCUSSION OF THE MODEL
	4. DAVE APPLICATIONS AND STATUS
	5. CONCLUSIONS
	REFERENCES
	DISTRIBUTION

